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Introduction

Those who have developed selection criteria for drought resistance in small grains
and those responsible for evaluating the expression of drought resistance in small
grains are very frequently not the small-grain breeder. As a result, these exists a
conflicting multiplicity of thought on three vital aspects of this topic, namely: (1)
what is drought resistance; (2) how does one breed for drought resistance, and
(3) how does one test for drought resistance in the cultivars released? These are not
simple questions (Eslick and Hockett, 1974). Furthermore, nearly all the
agricultural disciplines, in addition to plant breeding itself, have their own definite
ideas about the answers. Finally, these ideas frequently conflict at one or more
levels. The resulit is a great diversity of thought—some of which reflects discordant
and, at times, mutually exclusive concepts.

It is noteworthy that in the pursuit of drought resistance, much of the
experimental activity has been directed along two broad approaches. These
approaches might be labelled ‘environmentalistic’ (e.g. the approaches of Hurd
(1974) and Retiz (1974)) and ‘plant-engineering’ (e.g. guided by such works as De
Michele and Sharpe (1974), Lemeur and Blad (1974), Milthorpe and Moorby
(1974) and Shawcroft et al. (1974)). The ‘environmentalistic’ approach is frequently
used by agronomists, soil scientists, whole-plant physiologists, for example, and the
‘plant-engineering’ approach is often used by traditional plant breeders themselves.
whole-plant physiologists, plant anatomists, biochemically orientated plant
physiologists, etc. Disciplines active in either class are not rigidly exclusive. The
approach taken in each instance, however, is substantially different. The
environmentalistic school relies on plant performance in reaction to quantifiable
levels of stress as the best determiner of drought resistance. Quantifiable traits
associated with each entry in a germplasm collection are noted, and the entry’s
performance is evaluated over a range of stress. This provides the empirical basis
for the identification of those traits likely to contribute to drought resistance in the
breeding process. The plant-engineering school begins with a preconceived concept
or ideotype of what traits a drought-resistant cultivar should, in theory, possess.
such as awns (Grundbacher, 1963; Reitz, 1974), leaf erectness (Donald, 1968).
heavy cuticular wax production (Hull, Wright and Bleckmann, 1978; Johnson.
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Richards and Turner, 1983), deep prolific roots (Hurd, 1974), etc. Germplasm is
selected and crossed to produce a cultivar as close to the ideotype as possible.

Several studies have underscored the inadequacy of rapid laboratory screening
techniques or individual drought-resistance traits to acceptably predict whole-plant
performance effects on yield under stress (Blum, 1979, 1983; Sammons, Peters and
Hymowitz, 1980; Nass and Sterling, 1981). In the end, therefore, both the
lenvironmentalists and plant engineers must field-test the ‘new’ cultivars they have
ipproduced that they believe to be drought resistant. Ultimately, release of
Idrought-resistant cereals depends upon establishment of acceptable criteria for a
‘common definition of drought resistance. Regardless of the philosophy under
which a cultivar has been bred, only an empirical environmental test of field
performance can provide conclusive proof of the cultivar’s drought resistance. How
does the new cultivar perform in response to drought stress in the field? Although
the latter point may seem obvious, how one quantifies and interprets ‘performance
in response to drought stress in the field’ is itself the source of significant
philosophical disagreement. The environmentalist must solve the dilemma of what
is drought resistance both at the beginning and the end of his quest, by definition.
In reality, however, even the plant engineer must have his definition of drought
resistance in mind at the outset, because it will dictate the nature of the ideotype he
designs and attempts to breed.

It is with concern for achieving relevancy, accuracy, and the greatest possible
precision in the ‘final’ determination of drought resistance that the following review
is written. Both the environmentalists’ and the plant engineers’ approaches are
accepted as equally valid. The sole caveat assumed is recognition of the compelling
need to define and evaluate drought resistance in terms both of the cultivar’s
intrinsic, non-stressed yield potential (its success at coping with all factors affecting
it except drought), and of its yield reduction as a function of some quantifiable
measure of stress severity. In other words, aspects (1) and (3) in the introductory
paragraph are addressed, leaving (2) to the inclination of the reader, but
recognizing that ultimately (1) and (3) demand an environmentalistic approach.

Defining drought resistance

Some researchers have accepted as drought resistance itself, certain quantifiable
characteristics that are merely traits contributing to drought resistance. An
example might be the declaration that a cultivar is drought resistant because it
maintains a high plant-water potential when exposed to extremely low soil-water
potentials. Of itself, the relationship of plant-water potential to soil-water potential
is a trait that may or may not contribute to drought resistance. In any plant, the
definition of drought resistance must be linked to survivability. In annuals, such as
the cereal grains, the ultimate measure of survivability is production of viable seed.
Conveniently for agriculturalists, the production of viable seed is essentially
synonymous with yield.

Indexing yield to some quantifiable measure of stress severity, therefore, it is the
only means of quantitatively evaluating relative drought resistance in a large
collection of cultivars. This approach must be taken, since cultivars cannot be bred
for drought resistance alone, but rather must be capable of performing acceptably
in response to all the local factors affecting yield (e.g. temperature, daylength,
fertility, pests, pathogens, and cultural peculiarities) as well as drought.
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Drought resistance may in some instances need to be categorized according to
the growth stage in which it occurs (Begg and Turner, 1976), e.g. early
(preanthesis), midseason (flowering), late season (grain fill) or intermittent. When
drought is preanthesis, midseason, or intermittent, stress recovery may be equally
or more commercially relevant than is resistance to an uninterrupted terminal
drought (Bauer, 1972; Loresto, Chang and Tagumpay, 1976; Schmidt, 1983).
Passioura (1982) described two modes of plant response that are relevant when
considering the nature of the drought episode. He called these modes
‘conservative’ and ‘prodigal’. Conservative plants react incrementally (o stress.
gradually closing stomata as soil water is depleted and slowing water consumption
and growth. Prodigal plants operate in an on—off fashion, consuming water at a
nearly constant rate, with stomata wide open, until a critical depletion level triggers
stomatal closure. The plants then enter a state of reduced growth and metabolic
activity until the water supply is replenished. In prolonged or unbroken terminal
drought, the conservative response is better. In short-term or intermittent drought
episodes, the prodigal response results in less reduction of yield potential. unless.
of course, the episode exceeds the environmental limits of the prodigal plant’s
survivability, or unless a protracted suspension of activity occurs at a critical period.
such as pollination or grain filling. The latter risk assumes greater importance in
determinate plants (Salter and Goode, 1967). Work with various crops other than
small grains reviewed by Begg and Turner (1976) indicated that, in many instances.
the prodigal response is capable of fully compensating for brief periods of stress.
The mechanisms that allow the accelerated growth and development needed for a
stressed crop to ‘catch up’ to its non-stressed counterpart are not well understood
and are the source of great speculation.

Water use efficiency (WUE) is inappropriately and all too frequently equated
with, or used to assess, drought resistance (Hsiao and Acevedo, 1974; Reitz, 1974)
where WUE is defined as grain yield per unit water consumed. In most instances,
apparent changes in WUE are merely a reflection of optimal yield potential, and,or
differences in cultural practices or cultivar characteristics that affect plant vigor.
weed competition, depth of water extraction, and attainment and duration of
ground cover by the canopy (Pendleton, 1966; Viets, 1966; Fischer and Wall.
1976). Fischer and Turner (1978) point out that WUE is best defined as dry matter
produced per unit transpiration (not evapotranspiration). They further explain that
enhanced WUEs can usually be traced back to increasing transpiration as a fraction
of evapotranspiration, resulting either from greater soil extraction, greater canopy
coverage (which reduces soil evaporation), or from increases in harvest index.
Where WUE is equated with drought resistance, serious misinterpretations of
findings can result if the effect of the ontogeny of the cultivars compared is not
considered. Onset of drought after flowering will, for example. reduce harvest
index more than when the onset of drought occurs before flowering (reducing
vegetative growth).

Levitt (1972) introduced a unique concept for dealing with plant stresses. To give
plant scientists a more precise nomenclature for dealing with the concept of
environmental stress, he transferred to biology the language of mechanics. He
defined biological stress as any environmental factor capable of inducing a
potentially injurious (plastic or irreversible, i.e. non-elastic) strain. Levitt
recognized certain inherent differences between biological systems and inanimate
mechanical systems. Duration of stress in biological systems can positively or
negatively affect the magnitude of strain. Over time, an organism can deteriorate.,
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adapt, or otherwise change due to aging. For example, Reicosky, Campbell and
Doty (1975) found that resistances to water flow through the plant may change with
age, altering the effective availability of soil water at a given water potential
gradient. Even after strain has occurred, an organism has the capacity to repair
(heal) the injury. Therefore, in the truest sense, the irreversibility of strain must be
qualified to mean partially irreversible, and/or irreversible over a finite time span.

In deriving a working definition of stress resistance, Levitt (1972) modified his
physical analogy to explain what Precht, Christophersen and Hensel (1955) and
Precht (1967) had termed ‘resistance adaptation’ and ‘capacity adaptation’. Levitt
(1972) recognized that an organism’s stress resistance could operate through one of
two mechanisms: (1) by excluding or ‘avoiding’ the stress or (2) by surviving the
injury, i.e. ‘tolerating’ the stress. Stress tolerance could in turn operate through one
of two mechanisms: (1) although stress might not be avoided, the organism could
have the ability to avoid strain (strain avoidance); or (2) once strained, the
organism could have the ability to repair the strain (strain tolerance). He thus
equated strain avoidance and strain tolerance with Precht’s capacity adaptation and
resistance adaptation, respectively.

In applying these principles to define drought resistance, Levitt (1972)
conceptually recognized the need to interrelate an index of plant injury to an index
of stress severity. He explained that drought resistance can be defined in terms of
‘the water stress necessary to produce a specific plastic strain’. The choice of
parameters used to quantify the level of stress and the intensity of strain are
somewhat arbitrary. None the less, it is significant that Levitt frequently utilized
water potentials and yield in explaining the concept.

A final point in discussing Levitt’s nomenclature is that although he identifies
numerous mechanisms which contribute to drought resistance (via a variety of
evolved strategies), the specific mechanisms are only of importance in assessing
relative drought resistance if they are tied to the measurement of stress severity.
For example, assessment of drought resistance among cultivars could be
confounded if the drought was an uninterrupted terminal drought and the cultivars
being compared had widely divergent maturity dates. In this instance, if all cultivars
were planted on the same date, the very early cultivars could begin to senesce
before available soil water was significantly depleted. They would ‘escape’ drought
and never actually be exposed to significant environmental stress. If yields were
compared from such a study, yields from stressed, late cultivars, would be
compared with yields of non-stressed, early cultivars, both from supposedly the
same treatment. This is because in reality the early-maturing cultivar never
experiences an equivalent amount of stress, regardless of how stress is quantified
(transpiration deficit, plant-water potential, soil-water potential, etc.).

Even though earliness is a valid production strategy (MacKey, 1966, 1970;
Derera, Marshall and Balaam, 1969; Ray er al., 1974; Reitz, 1974), it should be
recognized that a cultivar that escapes drought may do so even if it is the exact
ideotype of drought susceptibility! It may, in fact, have no drought resistance
whatsoever if actually exposed to drought. It could, therefore, be quite
counterproductive to identify such a cultivar as a source of drought resistance in a
breeding program. In transferring its earliness, some other unrecognized negative
traits could also be transferred. One strategy to reduce the likelihood of such
experimental confounding is to delay planting of earlier cuitivars, so that all
cultivars in the test reached a fixed stage of development (e.g. anthesis or maturity)
at the same time (Fischer and Maurer, 1978; Sojka, Stolzy and Fischer, 1981).
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While earliness in cereals is frequently associated with reduced yield potential in
the absence of stress, successful transference of the sole trait of carliness could
enhance drought resistance in otherwise suitable cultivars.

Quantifying drought resistance

Defining the limits of drought resistance by ‘the water stress necessary to produce a
specific plastic strain’ is intentionally vague with respect to the parameters and units
employed to quantify water stress and plastic strain. Water stress must be tied
either to a direct measurement of the environment or a closely integrated
plant-environmental response, such as plant-water potential or leaf vapour
pressure deficit (as defined by Burrows and Milthorpe, 1976). The single most
relevant indicator of plastic strain in cereals is expressed through a reduction ot
grain yield. Total shoot production is important only if forage or bio-energy value
of the straw is relevant. Only grain production will be considered in the following
discussion.

Various specific approaches have been employed in the case of each parameter.
Until recent years, the quantification of stress intensity and duration has been
largely ignored. This is particularly disturbing, inasmuch as even in so-called
non-stressed nurseries the levels of stress are probably underestimated in many
instances. The contribution of spatial variability with respect to soil hydraulic
properties, canopy geometry, border (and/or so-called ‘clothesline’) effects, etc..
are seldom considered. Similarly, simple comparisons of absolute yields or even
relative treatment yields when relying on standard statistical approaches (analysis
of variance, LSD, Duncan’s multiple range test, etc.) to discriminate differences in
cultivar performance may be inadequate.

Some conceptually related approaches that begin to describe quantitatively the
complex interaction of stress level and cultivar response have been described by
several researchers (Finlay and Wilkinson, 1963; Allard and Bradshaw, 1964:
Eberhart and Russell, 1966; Finlay, 1968; Grafius, 1971; Easton and Clements.
1973; Blum, Gozlam and Mayer, 1981; Sojka, Stolzy and Fischer, 1981; Fox and
Rosielle, 1982; Blum, 1983; Jensen and Cavalieri, 1983). Each approach varies in
complexity and statistical rigor. Eberhart and Russell (1966), for example.
identified stress resistance by evaluating the statistical stability of cultivar yield
across environments, where a stable variety was regarded as one with a regression
coefficient (slope of the regression line) of 1.0 and with a mean square of deviation
from the regression of zero. However, even the simpler techniques link
quantitative field assessment of drought resistance to simultaneous characterization
of stress severity and stress response.

Allard and Bradshaw (1964) and Easton and Clements (1973) used regression
analysis to contrast overall population responses with individual cultivar response.
Their work, which was an extension of concepts originally suggested by Haldanc
(1946), provided a relatively reliable method of quantifying stress severity in the
absence of sophisticated instrumentation and simultaneously related stress severity
to yield response for each increment of stress observed. The precision and. to a
lesser extent, the accuracy of this technique are dependent upon the researcher’s
capacity to ensure that all other factors affecting the experiment are uniform across
all varieties and stress treatments. In its simplest form, their approach compares an
individual cultivar’s response (dependent variable) with that of the mean linear
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response of all entries in the trial (independent variable) for the desired trait
(preferably yield—unless there is some other logical or compelling index of stress to
be compared, e.g. plant-water potential, leaf vapour pressure deficit, stomatal
conductance, canopy temperature, etc.). The regression line of the individual
cultivar’s response is then compared with the regression line of the total
population. Numerous interpretations can be made.

Figure 7.1 presents a hypothetical example of such a plot. The conclusions drawn
from such a representation are most reliable when the population examined is large
and dominated by entries that are predominantly known to be well suited for local
conditions. As stated earlier, only one source of stress is imposed on the
experiment. The greater the number of stress increments, the more reliable one’s
interpretation of the data is likely to be.

In such an experiment, the separate response of most of the individual cultivars
would appear linear and nearly indistinguishable from the 1:1 line. Only a few
outlying responses would be obvious. If an outlying response were distinguished
primarily by an intercept significantly different from the 1:1 line, but with a slope
not significantly different from unity, the response is interpretable in terms of the
cultivar’s relative suitability to all factors in the local environment except the one
intentionally varied. Line A in Figure 7.1 is such a response. In this case, the y
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intercept is greater than the 1:1 line, indicating outstanding suitability for local
conditions (e.g. perhaps the cultivar has resistance to a local insect pest), but the
parallel slope indicates that cultivar A responds identically to each increment of
drought stress as the population mean. If line A were parallel to the 1:1 line. but
had a smaller y intercept (was under the 1:1 line), it would indicate particular
sensitivity to some local factor in the environment, but again. no difference in
drought susceptibility. Before going to the next example, it might be worth pointing
out that an analysis of this type makes use of the simple conceptual model proposed
by Lewis and Christiansen (1981). They suggested that the interaction of genetic
potential (g) and environment (e) to produce yield (y) could be expressed as the
linar equation:

y=ge+u Eq.(7.1)

where () is a constant (the intercept).

Line B represents the response of a cultivar sensitive to drought. In the case of B,
the plot is linear over the stress range observed, with a slope greater than unity.
indicating a greater susceptibility to each increment of stress than the population
mean. The trait degrades uniformly over the range of stress observed. The
evaluation of the stress susceptibility can be weighted either by the slope or the
point at which B’s yield falls below the population mean. In this example. B
out-performs the population across all but the severest ranges of stress. The latter
interpretation is more relevant in making a variety recommendation to the farmer
than it is to identification of stress resistance for breeding. This is because in spite of
a total genetic make-up resulting in excellent yield potential in the absence of
stress, one or more traits (that may be heritable) are contributing to severe drought
sensitivity when water availability is the only factor in the environment that is
varied. In terms of Equation 7.1, the source of variation in performance (slope) is
g, since e is the same for all varieties at each level of stress.

Line C is also an example of a drought-susceptible cultivar. It ditfers from B in its
curvilinear shape, resulting from greater sensitivity (slope > 1.0) to drought stress
in the first increments of stress encountered. At more severe levels of stress.
cultivar C exhibits stress sensitivity similar to the population mean (slope
approaches 1). Intuitively, drought response could not be expected to be truly
linear as in Equation 7.1 (although it may approach linearity over defined ranges of
environmental stress). If the form of the equation were linear and if one used finite
amounts of applied water to create the stress ranges, then deviations from the 1:1
line would have to be explained with positive intercepts in some cases at the zero
water increment, or even more absurdly, negative yields would occur at times in the
presence of applied water. In reality. yield would be expected to remain at zero
until a critical amount of water had been applied, then increase rapidly with
successive increments of applied water until reaching a linear phase, level off on 1
plateau of maximum yield expression, and then decline when soil water became
excessive.

Line D represents what might be regarded as a nearly ideal drought-resistant
response. In the non-stressed range, cultivar D matches the mean performance ot
the population. With each increment of stress, cultivar D exhibits a uniform. but
more gradual degradation of the trait observed (a linear response with slope <1.0).
Line E is probably most like the drought-resistant cultivars that exist in reality
(Knight, 1970; Schmidt, Johnson and Stroike, 1972; Rosielle and Hamblin. 1951:
Sojka, Stolzy and Fischer, 1981). Some non-stressed yield potential is sacrificed
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because of the presence of traits intended to stabilize yield during stress, preventing
achievement of maximum yield potential (Fischer and Wall, 1976; Hanson and
Nelsen, 1980; Schmidt, 1983). As stress becomes increasingly severe, however, the
cultivar eventually displays the same sensitivity to stress as the overall population
(slope approaches 1.0).

The hypothetical responses of cultivars C and E bear a strong resemblance to the
actual responses of the two most significant outlying cuitivars in a wheat (Triticum
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aestivum L. and T. turgidum L. var. durum) study conducted by Sojka, Stolzy and
Fischer (1981) in the Sonoran Desert of Mexico (Figure 7.2). Thirteen and ten
wheat genotypes were observed in the first and second years of the study.
respectively. The genotypes were subjected to varying intensities of uninterrupted
terminal drought.

In the first year of their study, one significant rainfall event disrupted the drought
treatment and genotype yields responded primarily in the manner explained for the
hypothetical cultivar A. Several high-yielding Mexican semi-dwarfs, Cajeme 71.
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Figure 7.3 Yield as a function of lowest observed midday y,. Mean #* for the best fit of each cultivar are
0.989 and 0.877 for the two seasons, respectively. Letter symbols A, Ca, Ci, D, J, K, M. N. P, T. and 7
are the same as those in Figure 7.2. Each point is the mean of four replicates —— pooled; @~ -@
Yecora 70; @ B Gabo; A----A Cocorit 71. (Sojka, Stolzy and Fischer, 1981)
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Yecora 70, 7 Cerros 66, and Cocorit 71, showed superb local adaptation (elevated
intercepts) with slopes that closely paralieled the population mean (similar drought
sensitivity over the range of severity observed). Outlying responses below the
population mean were primarily associated with non-adapted genotypes from
outside Mexico.

In the second year of their study (Sojka, Stolzy and Fischer, 1981), substantially
more severe stress occurred. No rain fell during the entire growing season. Yields
of the least stressed treatments in the second year began in the yield range of the
most severely stressed treatment of the first year. Response of the genotype
Cocorit 71 was similar to that of the hypothetical cultivar C in Figure 7.1 and
response of the cultivars Gabo and T64-2W were very similar to that of the
hypothetical cultivar E in Figure 7.1. The rapid advancement of computing
capability in the 1980s now makes it possible easily to determine least squares best
fits of such data to numerous curvilinear mathematical models, even with
inexpensive microcomputers. Better correlations of non-linear models more
accurately define the limits of drought sensitivity and resistance of the cultivars
tested. Understanding these limits could aid in selection of the best source of
resistance genes for a particular breeding effort.

Where appropriate instrumentation is available, an absolute index of severity can
be used to characterize stress, such as plant-water potential, the ratio of actual
evaporation to potential evapotranspiration, canopy temperature, the normalized
plant-water stress index or other valid indicators of stress severity. In turn, yield
responses can then be directly related to the desired environmental index. Sojka,
Stolzy and Fischer (1981) obtained results using xylem pressure potentials (1, ) that
were nearly identical to those using the yield comparisons described above. Stress
resistance and tendency for pronounced curvilinear responses were identified in the
same genotypes (Figure 7.3). Numerous combinations of environmental indices
and yield expression were tried before settling on absolute yield and lowest
observed y, (e.g. mean y, vs. % control yields), but all provided essentially
identical results.

Choice of yield and environmental indices
General considerations

Deciding which parameters to use to quantify stress, or how specifically to express
yield, is governed by numerous factors, not the least of which are the scientist’s
resources, previous research interests and experiences. In actuality, numerous
choices exist which could all be defended with substantial scientific arguments.
Nass and Sterling (1981) concluded that no one test alone can reliably determine
overall response to drought in wheat and barley (Hordeum vulgare). They even
suggested avoidance and tolerance should both be characterized for each cultivar
tested. As stated several times already, however, the important consideration is to
develop a function which allows accurate comparison of yields over definable
increments of stress. Comparison of genotypes or cultivars in any way that does not
carry through to this step may indicate the presence of traits suspected of
contributing to drought resistance, but they do not conclusively establish that a
particular entry is resistant.



Choice of yield and environmental indices 173
Some approaches to trait identification

One can argue that screening for the presence of drought-resistant traits is just as
important to a breeder as the final test of drought resistance. This is particularly
true for large-scale breeding efforts where several thousand entries must be
evaluated over a short time period. Few, if any, of the so-called rapid tests for
drought resistance, however, have subsequently been evaluated extensively and
conclusively in the field in any manner similar to that suggested in the previous
section. Consequently, they may focus too much attention on identifying a selected
trait without a true appreciation of its relative merit as applied to field
performance.

A number of approaches used to screen for the presence of drought-resistant
traits involve biochemical assays, other laboratory-intensive physiological analyses,
or ultra-short-term shoot-growth evaluations (Salim, Todd and Stutie, 1969;
Dedio, Stewart and Green, 1976; Johnson and Brown, 1977; Ashraf and
Abu-Shakra, 1978; Johnson and Asay, 1978; O'Toole, Aquino and Alluni, 1978:
Sammons, Peters and Hymowitz, 1978, 1979; El-Beltagy and Hall, 1979; Blum.
Sinmena and Ziv, 1980). Townley-Smith and Hurd (1979), Sullivan and Eastin
(1974), Hanson and Nelsen (1980), and Turner and Begg (1981), reviewed
numerous non-field tests for the presence of drought-resistant traits. These
procedures are both beyond the scope of this chapter and largely outside the
expertise of the author. A number of approaches developed in the greenhouse. in
the growth chamber, and in the field, however, are worth discussion with reference
to their field applicability.

GENETIC EXPRESSION

From the philosophy outlined to this point, it is already clear that grain yield
(wt/area) as a function of stress severity is the preferred index of plant productivity
under drought. This should not be interpreted as implying that there are no other
morphological or anatomical parameters worth quantifying as functions of water
stress. Various relationships of this nature provide useful assays for the presence of
drought-resistant traits. Indeed, creative thinking in this phase of drought testing
could help to guide the selection process by providing relevant and innovative
insights which until now have not been recognized. The following discussion cites
some previously reported applications and gives an example of how the concept
might be extended.

There have been a relatively limited number of reports that describe potentially
heritable traits as functions of quantified levels of water stress. One interesting area
has been in the study of cuticular wax contribution to drought resistance. Dubé er
al. (1975) related transpiration rate in the dark to leaf-water potential for two corn
(Zea mays L.) hybrids to determine relative differences in leaf-cuticular resistance.
They also observed dark respiration rate as a function of leaf-water potential.
Cuticular resistances were significantly different between hybrids, whereas dark
respiration rate was not. By mathematically treating the cutin matrix and cuticular
waxes of three horticultural species as two resistances acting in series, Schonherr
(1976) found that the cuticular waxes completely determined the water
permeability of the cuticles. Furthermore, extraction of the cuticular waxes
increased cuticle-membrane permeability by a factor of 300-500. Ebercrom, Blum
and Jordan (1977) developed a rapid colorimetric method of quantifying cuticular
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wax content in sorghum (Sorghum bicolor L. Moench), allowing screening of large
numbers of selections over a range of stress. Bengtson, Larsson and Liljenberg
(1978) found that when six oat (Avena sativa L.) cultivars were stressed, the
greatest reduction in epicuticular transpiration occurred in the cultivar that
responded with the greatest production of epicuticular wax. They also observed
that the chemical components of the wax changed with stress severity, and that the
nature of the changes in composition differed among varieties. Douglas, Richards
and Turner (1983) found similar cuticular-wax build-up in near-isogenic lines of
durum wheat (T. turgidum L. var. durum) and common wheat (7. aestivum L..) in
response to stress; however, they observed no association of water relations with
wax content. Isolines with waxier cuticles produced significantly higher yields in the
two least severe of three stress ranges, but were not different at the most severe
level of stress. Cuticular wax accumulation under stress has been reported in
various species by a number of others including Wright and Dobrenz (1973), Baker
(1974), Giese (1975), Hamilton (1975), Hunt, Holloway and Baker (1976), Van
Volkenburgh and Davies (1977) and Hull, Wright and Bleckmann (1978). In many
of the above, differences in the ultrastructure of the wax accumulations were also
found to be affected by environmental factors, and it has been suggested that the
nature of the ultrastructure as well as wax amount impacts the effectiveness of
cuticular wax in inducing drought resistance.

Relatively little attention has been paid to improving poilen-related phenomena
as they affect drought resistance in small grains. Khan, Heyne and Arp (1973)
reported that seed set and yield patterns were directly related to pollination, and
that in turn, pollination was significantly correlated with yield. It seems highly
probable that quantifying pollen-related stability parameters with environmental
indices and similar characterization of pollinating floral organs could contribute
significantly to drought resistance, particularly when drought occurs before or
during anthesis.

As stomata are directly involved in regulating transpiration losses, they often
figure prominently in the architecture of drought-resistant ideotypes. Not as much
attention, however, has been paid to actual stomatal characterization as to indirect
indicators of stomatal response to stress such as leaf diffusive resistance (R,), and
its reciprocal, leaf conductance, etc. (Schmidt, 1983). Much of the discussion of
stomata in this paper will follow in the next section, where R, is addressed as an
index of stress severity. It is difficult to separate the relative contribution of actual
stomatal characteristics to observed R, values from the effects of rooting patterns,
leaf angle, xylem resistance, etc. Therefore, it seems more appropriate to regard R
as an integrated environmental indicator.

Stomatal anatomy, physiology and function have been extensively reviewed in
recent years {(Cowan, 1977; Jones, 1977a; Koérner, Scheel and Bauer, 1979;
Raschke, 1979; Jarvis and Mansfield, 1981; Meidner, 1981; Farquhar and Sharkey,
1982; Kramer, 1983). A number of direct observations of stomatal characteristics
(e.g. size and frequency) have been made, but there seems to be an inconsistent
relationship between morphology and drought resistance (Muenscher, 1915;
Miller, 1938; Freeland, 1948; Hesketh, 1963; Izhars and Wallace, 1967; Dobrenz et
al., 1969; Miskin and Rasmusson, 1970; Heichel, 1971b; Miskin, Rasmusson and
Moss, 1972; Meyer et al., 1973; Ray et al.. 1974; Walton, 1974), even though their
physical characteristics are readily heritable (Heichel, 1971a; Wilson, 1971; Liang
et al., 1975; Tan and Dunn, 1975, 1976; Tan, Tan and Walton, 1976; Teare,
Peterson and Law, 1971). As Jones (1977a) concluded, it appears that the
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immediate potential for increasing drought resistance in cereals through
manipulation of these traits is probably limited.

Leaf rolling is another physical trait that has potential for controlling R, in
cereals. Various reports of leaf rolling have been made by researchers companny
drought resistance among cultivars (Oppenheimer, 1960; Parker, 1968; Sojka.
1974; Begg and Turner, 1976; Sojka, Stolzy and Fischer, 1981; Schmidt, 1983).
Although cereal grains are amphistomatal, they generally have greater stomatal
densities and lower R, on adaxial (upper) leaf surfaces. When complete rolling or
curling occurs, the adaxial surface becomes enclosed and the abaxial surface, with
lower stomatal density and higher R, is the only surface that remains exposed to
the atmosphere. At the same time, the effective transpiring leaf area is halved. In
many instances, rolling is also accompanied by an increased ereciness of the leaves.
Describing the behaviour of some stressed cultivars, Sojka, Stoizy and Fischer
(1981) wrote ‘with severe stress, flag leaves curl in soda-straw fashion and become
nearly vertical’. O’Toole and Cruz (1979, 1980) examined this phenomenon in
some detail in rice (Oryza sativa L.) and found that relative transpiration was
reduced significantly with leaf rolling, especially as wind velocities increased.
Furthermore, they associated leaf rolling with maintenance of elevated y, through
elevation of the effective R,.

Intuitively, the plant characteristic most immediately implicated in the search for
traits contributing to drought resistance has been plant-root geometry (Burton.
1959; Derera, Marshall and Balaam, 1969; Moss, Woolley and Stone, 1974). In
spite of this, few ‘breakthroughs’ have emerged for plant breeding from root
research. This is due to the difficulty of assessing root structure and function in siru
and in vivo. In addition, observations of root characteristics in artificially
constructed environments are notoriously suspect. Even if in situ observations
could be made conveniently in the field, the problem would be compounded by the
numerous soil physical and chemical factors that easily and drastically influence
genetic expression of root habit. The monumentally challenging problem of root
characterization has recently been excellently reviewed by Bohm (1979) and other
comprehensive aspects have been previously reviewed by Whittington (1969),
Carson (1974), Torrey and Clarkson (1975), and Bowling (1976).

With little exception it has been found that length of active roots per unit soil
volume as a function of depth, and depth of penetration of the active root system.
are the two root characteristics that most significantly affect drought resistance in
cereals. Root length per unit soil volume affects the resistance to water entry into
the plant, and depth of exploration substantially defines the volume of available
stored soil water that can be extracted by a crop at a given site. The best single
case-study of cereal breeding for enhanced rooting characteristics is chronicled by
the success story of the Swift Current breeding effort (Hurd, 1974). Significantly.
this is one of the few documented, economically successful efforts on record for
release of new cultivars bred specifically for drought resistance.

Using stability analysis to evaluate the responses of yield components to stress
appears to hold great promise. Fischer and his co-workers have been the most
prolific workers in this arena. In a series of three papers (Fischer and Maurer, 1975:
Fischer and Sanchez, 1979; Fischer and Wood, 1979), they explored the interaction
of phenotype and environment in great detail in an extensive senes of cereal trials
comparing a score or more of entries over several years of observation. Among the
parameters characterized were total dry matter harvest index, kernels/m®, kernel
weight, kernel height, kernels/spike, spikes/m?, cuticular wax, duration of grain
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filling, green ground cover, and others. In addition to the thorough analysis of
growth parameters, several indices of stress severity were used and several indices
of, and predictive functions for, drought response were devised and evaluated. The
reader is referred to the original publications for details. The work of Sojka, Stolzy
and Fischer (1979, 1981), discussed earlier and in the following section, was
conducted in conjunction with, and as a small part of, the overall CIMMYT
physiology program with Fischer and his co-workers. Application of analyses
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Figure 7.4 Use of stability analysis with response regression to quantify contribution of one trait to stress
resistance (for explanation see text)
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similar to those described in Figure 7.3 were also employed with interesting results
for various yield components by Fischer (1973), Fischer, Lindt and Glave (1977).
and Blum, Gozlan and Mayer (1981). Keim and Kronstad (1981) related yicld
components to osmotic potential in wheat. In another paper, Grafius (1971) used
stability parameters to describe yield component responses to stress and suggested
the use of iso-stress lines to relate the plant response to quantifiable increments ot
stress.

As cited earlier, awns have been associated with drought resistance in cereals. In
addition, Suneson, Boyles and Fifield (1948) and Atkins and Norris (1955)
suggested that awns favored increased yield potential in general, except where
collection of water in the awns and increased wind resistance of awns predisposed
the cultivars to lodging during storms. Awn characterization provides a good
example of how stability analysis might be extended to quantify the contribution of
awns to drought resistance. What is the quantitative relationship of awns to drought
resistance? Is drought resistance enhanced linearly or otherwise by the amount of
awns per spike? Do all awned cultivars respond in the same manner?

If one were to stress several isolines (A-E in Figure 7.4a) that differed only in
their length of awns, or alternatively, if one stressed a single awned cultivar and
trimmed the awns to several increments of awn length, a yield stability analysis of
the type explained in Figure 7.1 could be conducted. The results might be plotted as
shown in Figure 7.4a (for simplicity, linearity is assumed). Upon determining the
slope of each response line, one minus that slope can be plotted against awn length
to assess quantitatively the effect of awn length on drought response. Vanous
possible responses are plotted in Figure 7.4b. The same technique could be used 10
assess the effect of numerous other anatomical or morphological characteristics
such as tillers per plant (or per m’), spikelets per spike, root length, stomatal
number per cm® of leaf, flag leaf angle, g cuticular wax per m? of leaf, etc. Where
stress response was suspected to vary according to timing of stress and for stress
relief, separate analysis could be tailored to each probable scenario. The visual
assessment of the response could be made more compact by presenting yield.
environmental index, and character quantity on a single surface response. The
polynomial function describing such a response surface would be a valuable tool in
designing the optimal plant ideotype for a specific environment.

QUANTIFYING STRESS SEVERITY

Considerably more progress has been made in the past decade in our understanding
of the physics and physiology of stress than in the genetics of stress resistance. The
following discussion is intended to review some of the applications of stress
measurements in cultivar comparisons.

Probably the three most common field measurements of plant-water stress are
Yy, R, and osmotic potential (y,). Psychrometric measurement of total
plant-water potential (y,) has not been very useful in comparing varieties in the
field because the measurements are tedious, easily confounded by instrument
instability arising from such factors as temperature fluctuation, too slow in set-up
and response time, and too expensive to attack from a multiple instrument
approach. A new technology with great promise for future work is infra-red sensing
of canopy temperature (T,). Infra-red temperature sensing will be discussed in
greater detail below with vapor pressure deficit (VPD). and leaf vapor pressure
deficit (LVPD). Turgor pressure or relative turgidity comparisons of numerous
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cultivars being tested in the field are also too slow in themselves or are dependent
on other slow measurement-components to be useful in field screening trials. Of
course, in addition to plant and atmospheric stress measurements, determination of
soil-water potentials and soil-water extraction are valuable environmental indices.

Significant strategic decisions must be made by the researcher to use these
measurements effectively to characterize and compare properly stress response
among cultivars. To assure the validity of their sampling procedures, Sojka, Stolzy
and Fischer (1979, 1981) conducted numerous diurnal studies to identify time
periods when crop-water status was stable over a sufficiently long interval 10 allow
collection of large numbers of water-status measurements. They treated
water-status parameters made during these intervals as though they were at steady
state throughout the sampling period. Under their local conditions, an
approximately six-hour period was statistically identified at midday when
plant-water status parameters had zero slopes on diurnal response curves. In their
preliminary work, they observed that rehydration from midday stress brought
plant-water status as close to full recovery as it would achieve from the previous
day’s stress in one to two hours following sunset. Therefore, it was also feasible to
compare the seasonal non-stressed equilibrium (or recovery) water status of each
cultivar across the range of stress treatments imposed.

Figure 7.5 presents the previously unpublished 1974 seasonal time course of
early-morning (before sunrise) y,, midday y,, midday y,, and midday R, for the
three wheat genotypes (Yecora 70, Cocorit 71, and Gabo) studied intensively by
Sojka, Stolzy and Fischer (1979, 1981). These data more fully characterize the
seasonal stresses summarized in Figures 7.2 and 7.3. The consistency of the outlying
responses of Cocorit 71 and Gabo across all four water-stress parameters is striking.
At the time of their study, both Yecora 70 and Cocorit 71 were regarded as two of
the best-available cultivars for production in the region where these experiments
were conducted. In Figures 7.2 and 7.3 this is evident from the elevation of their
response regressions above the population mean response (1:1 line). Particularly
noteworthy about Cocorit was the sharp decrease in yield (especially in 1974) with
stress. In examining Figure 7.5 it is apparent that in each parameter measured,
Cocorit outlay the other two varieties toward the stressed end of the response scale.
Yecora 70, which nearly parallels the mean in Figures 7.2 and 7.3, is between most
of Cocorit 71’s and Gabo’s responses in Figure 7.5. Gabo, which shows a
particularly drought-resistant yield response in Figure 7.2 for 1974, is usually in the
low-stress range for all parameters in Figure 7.5.

Using Levitt’s (1972) nomenclature, the relationship of each cultivar’s water
potential among treatments is an expression of its shift from stress avoidance into
stress tolerance. Each cultivar’s yield loss with falling water potential is an
expression of its shift from strain avoidance to strain tolerance. The concept of
conditioning (i.e. repair, or time-limited plastic response) is evident from the
manner in which midday y, ceases falling in Figure 7.5 for each treatment in the
latter third of the observation period. A similar response was reported by Bidinger
(1977) and by Fischer and Sanchez (1979).

Equally striking is how soon the pre-sunrise , fails to achieve full recovery after
irrigation ceases. Equally important is the continuing decline in pre-sunrise y, to
the end of the observation period (even though midday v, had stabilized). From
the pre-sunrise 1y, and diurnal y, and R, response, Sojka, Stolzy and Fischer (1979,
1980) concluded, as did Boyer and McPherson (1975), that on a daily basis there is
only a brief period in the morning of vigorous photosynthesis and cell expansion in
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stressed cereals. The limitation of these activities is therefore one of the most direct
causes of reduced growth and yield during drought. This hypothesis would appear
to be confirmed by the high correlation that Sojka, Stolzy and Fischer (1981) found
for curvilinear regressions of yield on pre-dawn 1, (Figure 7.6) wherein yield loss
had been almost fully expressed in the initial few increments of falling pre-dawn ,.
Fischer and Maurer (1978) also noted reduced sensitivity of yield to drought as the
drought became more severe.

Yield (t/ha)
»

0 =5  —10 -5 —20 -256 -30 35 —40
Pre-dawn ¢ (bars)

Figure 7.6 Sensitivity of yield in 1974 to predawn v,. Best fit of Cocorit 71 low 4, in the formof y = A +
Bx was only slightly better than the form y = A + (B/x) used for other plots. The £ for average y, or
low v, fits were: 0.973 and 0.980, 0.948 and 0.975, and 0.516 and 0.572 for Yecora 70, Cocorit 71, and
Gabo, respectively. Each point is the mean of four replicates. Average ¢,: @——@ Yecora; l--~-M
Gabo; A A Cocorit. Low y,: O—0 Yecora; (- -~ -] Gabo; A+ A Cocorit

Thorough interrelationships of a host of drought stress components including ,,
Ya, Yp, turgor pressure, relative water content, transpiration flux density,
soil-water potential etc, have been reported by numerous groups (Bauer, 1972;
Connor, 1975; Dedio, 1975; Biscoe, Cohen and Wallace, 1976; Jones, 1977b; Adjei
and Kirkham, 1980; Bristow, DeJager and Van Zyl, 1981; Day, Lawlor and Legg,
1981). Others have interrelated photosynthesis with several of these parameters
(Todd and Webster, 1965; Shimshi and Ephrat, 1975; Dedio, Stewart and Green,
1976). These relationships have been thoroughly and most recently reviewed for
wheat by Kirkham and Kanemasu (1983).

While some success has been reported in discriminating cultivar response
difference through R; measurements (noteably Shimshi and Ephrat, 1975), field
measurements of R, have generally proved to be more variable than those reported
for controlled-environment studies. A number of papers have shown significant
scatter in field-measured R, for various reasons in a number of species in
plant-water relations studies (Turner and Parlange, 1970; Sojka, Stolzy and
Fischer, 1979, 1981; Jones, Pena and Carabaly, 1980; Squire and Black, 1981,
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Kaufmann, 1982a,b; Sojka and Parsons, 1983). In addition, Sojka and Stolzy
(1980) showed that R, could be influenced by soil-oxygen diffusion rate and, in
some instances, by soil temperature as well, in a number of species including wheat.
Bell and Incoll (1981) and Bell and Squire (1981) showed 25-35% variation in R,
between porometers that they compared. A number of reviews and theoretical
treatments of R, porometry have identified problems in the development and
application of theory (Berkowitz and Hopper, 1980; Hack, 1980; Chapman and
Parker, 1981; Bristow, 1982). Several groups have reported that in most species
stomatal closure does not occur gradually in response to stress. Instead, closure
occurs abruptly upon reaching a stress threshold, and that these thresholds are
affected by preconditioning and humidity (Raschke, 1975; Stange er al., 1951;
Turner and Begg, 1981). In view of these uncertainties associated with field R,
measurements, the peculiarities of stomatal function, and the stomatal abnormali-
ties discussed in the previous section, the prospect for extensive use of porometry in
field screening of large numbers of cultivars appears discouraging.

Many of the reviews already cited confirm the responsiveness of crops to
atmospheric VPD. Burrows and Milthorpe (1976) argued that to best characterize
plant-water status, LVPD (the difference between actual atmospheric vapor
pressure and the saturated vapor pressure of air at the temperature of the leaf)
rather thar VPD should be used because it integrates internal plant-water status
with the degree of externally applied stress.

A rapidly evolving new technology is arising around the non-contact sensing of
canopy temperatures with infra-red thermometry. As transpiration takes place, the
latent heat of vaporization results in cooling of the leaf by transpiration. As
soil-water availability declines during drought periods, the conductivity of water
through the soil-plant continuum also declines. As this occurs, water cannot be
transported to the evaporative sites in leaves at a sufficient rate to meet the
potential rate of evaporation. Surplus radiant energy then results in increased leaf
temperature, often rising above atmospheric temperatures. Several strategies for
using this concept to characterize stress have evolved. These include stress
characterization simply as crop canopy temperature (7.), canopy temperature
minus air temperature (A7), the time integration of AT, which has been called the
stress degree day (ATD), and the coupling of T, with VPD and LVPD to determine
a so-called normalized stress index (NSI) which is an attempt at rendering all
IR-sensed canopy stress universally comparable for a specific crop regardless of the
local soil and atmospheric conditions over the period of measurement (Jackson.
Reginato and ldso, 1977; Ehrler et al., 1978a,b; Idso et al., 1981; Jackson et al. .
1981).

The technology and opportunities for using these techniques to select for drought
resistance have already received some attention (Millard et al., 1978; Blum, Mayer
and Gozlan, 1982; Blum, 1983). Rapid stress assessment may be possible, perhaps
more than once a day, and conceivably involving hundreds of varieties—or even
thousands if over-flight IR photography or radiometry can be adapted. The
technology may be restricted to clear dry physiographic regions, however, and to
exacting cultural and sampling protocol. Variation in incoming radiation caused by
haziness or clouds, plant age, canopy coverage, canopy geometry, and possibly
relative humidity have all been identified as sources of variation affecting several
aspects of IR sensing and the relationships of the factors composing the NSI (ldso
and Jackson, 1968; Heilman, Heilman and Moore, 1981; Geiser et al., 1982; 1dso.
1982; Sojka et al,, 1984).
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Progress and prospects: a commentary

Drought-resistance research has had a history much like the story of ‘the little
engine that could’. Three or four decades ago, few held out hope for significant
progress in breeding for drought resistance. Like the little engine, however, seeing
the great need inspired a commitment. A running start was made at the hill, solving
the more obvious and easier problems first. To reach the top, however, an effort
must be made to sustain the momentum. I think we can ... I think we can.

To be successful will require a redoubling of effort in some areas and a
movement away from others to new thrusts. Basic plant—water relations research
may have reached a plateau of understanding in some areas. Much of our current
research is contributing less new knowledge than some of us may care to admit.
Where water-relations research dovetails with drought-resistance breeding, there
are several arenas that have barely been identified to date, let alone explored.
Below are some examples.

In 1964 Allard and Bradshaw pointed out that individual response and
population responses to stress can be quite different, because of the genetic
diversity of populations. They called this phenomenon ‘population buffering’.
These principles have not been studied with any commitment in grain-crop
production or at a sufficient level of sophistication to date. It is highly likely that
varying ‘mixes’ of cultivars (i.e. literally mixed seed) could have profoundly
different responses to drought than the proportional sum of the single cultivars.
The principle is an established one in range science. Both the combinations of
cultivars and their relative proportions in mixtures deserve a closer look. A similar
agument might be made for an extensive effort of drought evaluation of hybrid seed
and perhaps even hybrid mixtures.

Root-diameter reduction of as much as 25% has been reported by several
authors in association with decreased y, (Huck, Klepper and Taylor, 1970; Cole
and Alston, 1974; Tinker, 1976; Faiz and Weatherly, 1978). Contraction of roots
separates much of their surface area from the water-films surrounding soil particles,
increasing the effective resistance for water entry. There has been no effort of
which the author is aware, to screen for less elastic root systems.

Similarly, while it has long been known that mycorrhizal associations form on the
surfaces of cereal roots, little or no work has been undertaken to determine if field
inoculation with mycorrhiza is feasible, if mycorrhiza have a significant impact on
plani—water relations, or if mycorrhizal strain X cultivar interactions are specific,
thus requiring testing for optimal strain X cultivar combinations.

An important production strategy for achieving drought resistance is to promote
early deep rooting. There is insufficient information on the interaction of various
production and cultural practices with cereal cultivars for maximum root
expression. A major factor which limits early plant development and root growth is
the impact of soil and shoot temperatures on plant growth. Numerous studies have
been conducted on the effect of reflectants and anti-transpirants sprayed on crops
to lower temperatures and reduce transpiration in established crops. No work has
been undertaken to increase the radiation absorbancy of early crop canopies or of
light-colored soils to promote carly stand establishment and root growth through
increased heat retention. This goal might be achieved by dusting with fine carbon
powder. or by mixing dyes with herbicides, fungicides, or the like. Individual
cultivars would, in ali likelihood, display ditferences in response to these
treatments. Root/shoot ratios of soybean have been shown to be greatly atfected by
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the spectral quality of light to which shoots are exposed (M.J. Kasperbauer,
personal communication). There may be inert or non-toxic dyes or other surface
coatings which could be sprayed on developing canopies that would filter incoming
radiation to enrich the desired spectral segment, thereby increasing the
root-to-shoot ratio. Again, this response is likely to be different among cereal
cultivars.

Summary

Although a single comprehensive physiological definition of drought resistance
may not exist, two points regarding identification of drought resistance bear
repeating. There is a difference between assays for the presence of traits associated
with drought resistance and tests. that prove a cultivar is drought resistant.
Secondly, drought resistance can be determined only by determining a crop’s actual
yield, in the field, as a function of some quantifiable index of stress severity.

Although Blum (1983) noted a general lack of information on the relationships
between physiological adaptive traits and yield, precise morpho-physiological
characterizations are of limited value to the breeders if they are not quantitatively
tied to a field-derived, stress-indexed measurement of yield.. Conversely, precise
yield comparisons associated with non-quantifiable indices of stress contribute
little. In addition, in all likelihood, there are a number of quantitative stress indices
that can be used in characterizing drought resistance. The specific nature of these
inputs will depend upon the particular needs of each specific breeding program.

Finally, as always, and as in all scientific endeavors, there is a constant and
urgent need to think creatively and explore untried approaches, even if they go
against the momentary conventional wisdom. Progress has never come in any other
way.
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